导言

这个《100篇视觉研究文献》列表是Yury Petrov博士2007年左右在东北大学任教时编纂的。原始网页现在已经失效了。我在这里转载了原始网页的内容。

Yury Petrov博士的选文标准

我剔除了所有的综述文章。这个列表中的文章是根据Google Scholar, Scopus, and Web of Science数据库截止到2007年1月的引用次数排序的。Google Scholar和Scopus的引用数据较为一致,但是Web of Science上的数据有很大的差异。前两个数据库偏重近期刊登在网上的文章。因此,三个数据库中的引用数据中最高的两项(Google Scholar和Web of Science)决定了文章的次序。我觉得这个排序给“文献的重要性”提供了相对客观的标准。同时我也引用了一些“主观评分”作补充,比如有多少受欢迎的《感觉与知觉》教材引用了某个文章。作为参考的教材包括:

  • Blake, R. and Seculer, R., Perception, 5-th edition, McGraw Hill Higher Education, (2006).
  • Coren, S., Ward, L. M., and Enns, J. T., Sensation and Perception, 6-th edition, John Wiley & Sons, Inc., (2004).
  • Goldstein, B., Sensation and Perception, 6-th edition, Wadsworth-Thomson Learning, (2002).
  • Mater, G., Foundations of Perception, Psychology Press, (2006).
  • Schiffman, H. R., Sensation and Perception, 5-th edition, John Wiley & Sons, Inc., (2001).
  • Wolfe, J. M. et al., Sensation and Perception, Sinauer Associates, Inc., (2006).
  • Wandell, B. A., Foundations of Vision, Sinauer Associates, Inc., (1995).
原作声明: 文章的选择只是我的个人观点。ISI数据库只能追溯到1970年(虽然Web of Science声称“SCI扩展版”数据库可以追溯到1900年),较老的文献的引用数据很可能被低估了。这里的排序仅供参考,并不能被用来比较文章的科学贡献。
Feitong的声明: 这个列表相对比较久远了,离今天(2017年)已经有10年了。在过去的十年,视觉科学研究领域有了突飞猛进的发展;新的研究成果有可能给这些早期的文章提供了更多的证据,也可能发现了其中不少的错误。不论如何,这个列表仍然可以作为一个比较好的视觉科学研究的《导读清单》 ,能帮助新进入视觉科学的研究者了解整个视觉科学的历史和蓝图,以及各种经典的视觉科学研究手段,比如心理物理学、神经生理学、计算建模等等。

资源

我基本上收集全了整个列表,但是依然漏掉了其中的5篇文献。 点击这里 下载整个压缩包[259.7MB]. 在我的求学期间,我没有完全读完整个列表,但是应该读完了80%~85%.

列表

IDCitation
1Hubel, D. H., Wiesel, T. N. (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. Lond. 160: 106-154.
2Treisman, A. M., & Gelade, G. (1980) A feature integration theory of attention. Cognitive Psychology, 12, 97-136.
3Hubel, D. H., Wiesel, T. N. (1968) Receptive fields and functional architecture of monkey striate cortex. J. Physiol. Lond. 195: 215-243.
4Posner, M. I. (1980) Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3-25.
5Marr, D. & Hildreth, E. (1980) Theory of edge detection. Proceedings of the Royal Society of London, 207B, 187-217.
6Enroth-Cugell, C and Robson, J. G. (1966) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol., 187(3): 517-552.
7Hubel, D. H. and Wiesel, T. N. (1965) Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J Neurophysiol, 28, 229-289.
8Felleman, D.J., Van Essen, D.C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1(1): 1-47.
9Gray, C. M., Konig, P., Engel, A. K., and Singer, W. (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338, 334-337.
10Shepard, R. N., & Metzler, J. (1971) Mental rotation of three-dimensional objects. Science, 171(3972): 701-703.
11Hubel, D. H. and Wiesel, T. N. (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol, 206(2):419-436.
12Campbell FW, Robson JG. (1968) Application of Fourier analysis to the visibility of gratings. J Physiol 197(3):551-66.
13Biederman, I. (1987) Recognition-by-components: A theory of human image understanding. Psychological Review, 94, 115-147.
14Wong-Riley, M. T. T. (1979) Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res. 171: 11-28.
15Kuffler, S.W. (1953) Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16, 37-68.
16Livingstone, M.S., Hubel, D.H. (1988) Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science, 240(4853): 740-749.
17Adelson E. H. & Bergen, J. R. (1985) Spatio-temporal energy models for the perception of motion. Journal of the Optical Society of America A, 2, 284-299.
18Blakemore, C. and Campbell, F. W. (1969) On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J Physiol., 203(1): 237-260.
19Wiesel, T. N. and Hubel, D. H. (1963) Single cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol, 26, 1003-1017.
20Kanwisher, N., McDermott, J., Chun, M.M. (1997) The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11): 4302-4311.
21Hubel, D. H. and Wiesel, T. N. (1959) Receptive fields of single neurones in the cat’s striate cortex. J Physiol, 148, 574-591.
22Eckhorn, et al. (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex? Biological Cybernetics, 60(2): 121-130.
23Duncan, J., Humphreys, G. W. (1989) Visual search and stimulus similarity. Psychol Rev, 96(3): 433-58.
24Goodale, M. A., & Milner, A. D. (1992) Separate visual pathways for perception and action. Trends in Neurosciences, 15, 20-25.
25Nathans, J., Thomas, D., and Hogness, D. S. (1986) Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science, 232(4747): 193 - 202.
26Koenderink, J.J. (1984) The structure of images. Biological Cybernetics, 50(5): 363-370.
27Moran, J., & Desimone, R. (1985) Selective attention gates visual processing in the extrastriate cortex. Science, 229(4715): 782-784.
28Corbetta, M. et al. (1991) Selective and divided attention during visual discriminations of shape, color, and speed: Functional anatomy by positron emission tomography. Journal of Neuroscience, 11(8): 2383-2402.
29Barlow HB, Blakemore C, Pettigrew JD. (1967) The neural mechanism of binocular depth discrimination. J Physiol, 193(2):327-42.
30Navon, D. (1977) Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9, 353-383.
31Olshausen, B. A. and Field, D. J. (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381: 607-609.
32Livingstone, M.S., Hubel, D.H. (1984) Anatomy and physiology of a color system in the primate visual cortex. Journal of Neuroscience, 4(1): 309-356.
33Treisman, A., Gormican, S. (1988) Feature analysis in early vision: evidence from search asymmetries. Psychological review, 95(1): 15-48. Cited 542 times.
34Belliveau, J. W., Kennedy, D. N., and McKinstry, R. C. (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 254(5032): 716 - 719.
35Hubel, D. H. and Wiesel, T. N. (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci, 278(961): 377-409.
36Gray, C. M. and Singer, W. (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. PNAS, 86(5): 1698-1702.
37Daugman J. G. (1985) Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A, 2(7): 1160-1169.
38Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983) Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences, 6, 414-417.
39Field D. J. (1987) Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A, 4, 2379-2394.
40D. Marr, T. Poggio (1979) A Computational Theory of Human Stereo Vision. Proceedings of the Royal Society of London. Series B, Biological Sciences, 204(1156): 301-328.
41Zeki, S. et al. (1991) A direct demonstration of functional specialization in human visual cortex. Journal of Neuroscience, 11(3): 641-649.
42Barlow, H. B. and Levick, W. R. (1965) The mechanism of directionally selective units in the rabbit’s retina. J. Physiol. 178: 477-504.
43Sereno, M. I. et al. (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science, 268(5212), 889-893.
44Marr, D., & Nishihara, H. K. (1978) Representation and recognition of the spatial organization of three-dimensional shapes. Proceedings of the Royal Society of London, 200, 269-294.
45Maunsell, J.H.R., Van Essen, D.C. (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. Journal of Neurophysiology, 49(5): 1127-1147.
46Gross, C. G., Rocha-Miranda, C. E., and Bender, D. B. (1972) Visual properties of neurons in inferotemporal cortex of the Macaque. J Neurophysiol 35, 96-111.
47Johansson, G. (1973) Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14, 201-211.
48Smith, V.C., Pokorny, J. (1975) Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Research, 15(2): 161-171.
49Rensink, R.A., O’Regan, J.K., Clark, J.J. (1997) To see or not to see: The Need for Attention to Perceive Changes in Scenes. Psychological Science, 8(5): 368-373.
50Watson, J. D. G. (1993) Area V5 of the Human Brain: Evidence from a Combined Study Using Positron Emission Tomography and Magnetic Resonance Imaging. Cerebral Cortex, 3, 79-94.
51Thorpe, S., Fize, D., and Marlot, C. (1996) Speed of processing in the human visual system. Nature, 381, 520-522.
52Bienenstock, E. L., Cooper, L. N., and Monro, P. W. (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neuroscience 2, 32-48.
53Bell, A.J., Sejnowski, T.J. (1997) The ‘independent components’ of natural scenes are edge filters. Vision Research, 37(23): 3327-3338.
54Boynton, G. M., Engel, S. A., Glover, G. H., and Heeger D. J. (1996) Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1. J. Neurosci. 16: 4207-4221.
55Wolfe, J.M., Cave, K.R., Franzel, S.L. (1989) Guided search: an alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 15(3): 419-433.
56DeValois, R.L., Albrecht, D.G., Thorell, L.G. (1982) Spatial frequency selectivity of cells in macaque visual cortex. Vision Research, 22(5): 545-559.
57Julesz, B. (1981) Textons, the elements of texture perception, and their interactions. Nature, 290: 91-97.
58Koch, C. and Ullman, S. (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol, 4(4): 219-227.
59Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs, 74, 1-29.
60Derrington, A. M., and Krauskopf, J., and Lennie, P. (1984) Chromatic mechanisms in lateral geniculate nucleus of macaque. J Physiol, 357(1): 241-265.
61Watson, A. B. and Ahumada A. J. (1985) Model of human visual-motion sensing. J Opt Soc Am A, 2(2): 322-341.
62Newsome, W.T., Pare, E.B. (1988) A selective impairment of motion perception following lesions of the middle temporal visual area (MT). Journal of Neuroscience, 8(6): 2201-2211.
63Eriksen, C.W., St James, J.D. (1986) Visual attention within and around the field of focal attention: a zoom lens model. Perception and Psychophysics, 40(4): 225-240.
64Desimone, R., Albright, T. D., Gross, C. G. and Bruce, C. (1984) Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci. 4: 2051-2062.
65Tootell, R.B.H. et al. (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. Journal of Neuroscience, 15(4): 3215-3230.
66Field D. J. (1994) What is the goal of sensory coding? Neural Computation, 6(4): 559-601.
67Chelazzi, L., Miller, E. K., Duncan, J., and Desimone, R. (1993) A neural basis for visual search in inferior temporal cortex. Nature 363, 345-347.
68Movshon, J.A., Adelson, E.H., Gizzi, M.S., and Newsome, W.T. (1985) The analysis of moving visual patterns. Study Week on Pattern Recognition Mechanisms (pp. 117-151) Pontificia Scademia Scientiarvm, V, Eds: Carlos Chagas, Ricardo Gattass, and Charles Gross, Rome: Vatican Press.
69Adelson, E. H., & Movshon, J. A. (1982) Phenomenal coherence of moving visual patterns. Nature, 300, 523-525.
70Meister, M., Wong R. O., Baylor, D.A., and Shatz C.J. (1991) Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science, 252(5008): 939-943.
71Marr, D., & Poggio, T. (1976) Cooperative computation of stereo disparity. Science, 194(4262): 283-287.
72Field, D.J., Hayes, A., Hess, R.F. (1993) Contour integration by the human visual system: Evidence for a local ‘association field’. Vision Research, 33(2): 173-193.
73Heinze, H. J. et al. (1994) Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature, 372(6506): 543-546.
74Heeger, D. J. (1992) Normalization of cell responses in cat striate cortex. Vis. Neurosci., 9(2): 181-197.
75Luck, S. J., Chelazzi, L., Hillyard, S. A., and Desimone, R. (1997) Neural Mechanisms of Spatial Selective Attention in Areas V1, V2, and V4 of Macaque Visual Cortex. J Neurophysiol, 77(1): 24-42.
76Britten, K. H., Shadlen, M. N., Newsome, W. T., and Movshon, J. A. (1992) The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neuroscience, 12, 4745-4765.
77Treue, S. and Maunsell, J. H. R. (1996) Attentional modulation of visual motion processing in cortical areas MT and MST. Nature, 382: 539-541.
78Knierim, J.J., Van Essen, D.C. (1992) Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. Journal of Neurophysiology, 67(4): 961-980.
79Barlow, H. B. (1972) Single units and sensation: A neuron doctrine for perceptual psychology? Perception, 1, 371-394.
80Jones, J. P. and Palmer, L. A. (1987) An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J Neurophysiol, 58(6) 1233-1258.
81Olshausen, B. A. and Field, D. J. (1997) Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37, 3311-3325.
82Corbetta, M. et al. (1998) A common network of functional areas for attention and eye movements. Neuron, 21(4): 761-773.
83Malik, J. and Perona, P. (1990) Preattentive texture discrimination with early vision mechanisms. J Opt Soc Am A, 7, 923-932.
84Fries, P., Reynolds, J. H., Rorie, A. E., and Desimone, R. (2001) Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention. Science, 291(5508): 1560 - 1563.
85Malach, R. et al. (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. PNAS, 92: 8135-8139.
86Kapadia, M.K., It:o, M., Gilbert, C.D., Westheimer, G. (1995) Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys. Neuron, 15(4): 843-856.
87DeYoe E. A. et al. (1996) Mapping striate and extrastriate visual areas in human cerebral cortex. PNAS, 93, 2382-2386.
88Kastner, S. et al. (1999) Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron, 22(4): 751-761.
89Leopold, D. A. and Logothetis, N. K. (1996) Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry. Nature, 379: 549-553.
90Hopfinger, J.B., Buonocore, M.H., Mangun, G.R. (2000) The neural mechanisms of top-down attentional control. Nature Neuroscience, 3(3): 284-291.
91Engel, S. A., Glover, G. H., and Wandell, B. A. (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cerebral Cortex, 7, 181-192.
92Atick, J. J. (1992) Could information theory provide an ecological theory of sensory processing? Network: Comp. in Neural Sys., 3(2): 213-251.
93Daugman, J. G. (1980) Two-dimensional spectral analysis of cortical receptive field profiles. Vision Res, 20(10): 847-856
94Olshausen, B. A. et al., Anderson, C. H., and Van Essen, D. C. (1993) A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J Neuroscience, 13, 4700-4719.
95Reichardt, W. (1961) Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In W. A. Rosenblith (Ed.), Sensory Communication, 303-317. Cambridge, MA: MIT Press.
96Ullman, S. (1984) Visual Routines. Cognition, 18, 97-159.
97Maloney, L. T. and Wandell, B. A. (1986) Color constancy: a method for recovering surface spectral reflectance. J Opt Soc Am A, 3(1): 29-33.
98van Hateren, J. H. (1998) Independent component filters of natural images compared with simple cells in primary visual cortex. Proceedings of the Royal Society B: Biological Sciences, 265(1394): 359-366.
99Itti, L. and Koch, C. (2000) A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res. 40(10-12):1489-1506.
100Gottlieb, J., Kusunoki, M. and Goldberg, M. E. (1998) The representation of visual salience in monkey parietal cortex. Nature 391: 481-484.